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Abstract
We provide several schemes to construct the continuous-variable SWAP gate
and present a Hermitian generalized many-body continuous controlledn-NOT
gate. We introduce and study the hybrid controlled-NOT gate and controlled-
SWAP gate, and their physical realizations are discussed in trapped-ion systems.
These continuous-variable and hybrid quantum gates may be used in the
corresponding continuous-variable and hybrid quantum computations.

PACS numbers: 03.67.Lx, 03.65.-w

1. Introduction

The quantum computer [1, 2] is a device which operates with quantum logic gates. It was
shown that any quantum computation can be built from a series of one-bit and two-bit quantum
logic gates [3]. The fundamental controlled-NOT (CN) [4] gate, widely discussed in the
literature [5], is the two-qubit gate in which one qubit is flipped conditioned on the state of
another qubit. Mathematically the CN gate is defined as

CN12|i〉1|j〉2 = |i〉1|i ⊕ j〉2 (1)

where |i〉1|j〉2(i, j = 0, 1) are the basis states of the two qubits, ⊕ denotes addition modulo 2.
The first (second) qubit is the control (target).

It is known that an unknown qubit state |ψ〉 can be swapped with the qubit state |0〉 using
only two CN gates [6], i.e.

CN21CN12|ψ〉1|0〉2 = |0〉1|ψ〉2. (2)

In [7], the gate CN21CN12 is called a double CN gate. Using the CN gates one can construct
a general two-qubit SWAP gate as follows:

SWAP12 = CN12CN21CN12 (3)

which makes the transformation

SWAP12|i〉1|j〉2 = |j〉1|i〉2. (4)
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The SWAP gate can be constructed in an alternative way as [8]

SWAP12 = 1
2 (1 + σx1σx2 + σy1σy2 + σz1σz2) (5)

where the operators σαi (α = x, y, z) are the usual Pauli operators of system i. The remarkable
properties of the SWAP gate are described by Collins et al [7], Eisert et al [9] and Chefles
et al [10]. Both the CN gate and SWAP gate are two-qubit gates. The one-qubit gates include
a NOT gate which is expressed by the Pauli operator σx and the Hadamard gate

H = 1√
2
(σx + σz) (6)

which makes the transformation

H |0〉 = 1√
2
(|0〉 + |1〉) (7a)

H |1〉 = 1√
2
(|0〉 − |1〉). (7b)

Both the NOT gate and the Hadamard gate are self-inverse, i.e. squaring them give the identity
operators.

For three qubits there are two types of gates, the Toffoli gate [11] and Fredkin gate [12],
which are also called the (controlled)2-NOT gate and the controlled-SWAP (CSWAP) gate,
respectively. The CSWAP gate performs the following transformation:

CSWAP(12)3|i〉1|j〉2|0〉3 = |i〉1|j〉2|0〉3 (8a)

CSWAP(12)3|i〉1|j〉2|1〉3 = |j〉1|i〉2|1〉3 (8b)

where the third qubit acts as the control. The quantum gates described above act on discrete
variables, the qubits. In this paper we give the continuous-variable and hybrid versions of
quantum gates, which may be used in continuous-variable [13] and hybrid [14] quantum
computation. In the hybrid version of quantum gates the discrete variable acts as the control
and the continuous variables as the targets.

In section 2 we begin with the introduction of the one-body gates for continuous variables.
We proceed in section 3 to study the two-body and many-body continuous-variable gates and
consider the CN gate, SWAP gate, and controlledn-NOT gate as well as the cloning gate.
Several methods are proposed to realize the SWAP gate. In section 3 we introduce and study
the hybrid quantum gates, hybrid CN gates and CSWAP gates. We give two schemes to realize
the hybrid gates in trapped-ion systems. The conclusion is given in section 5.

2. One-body gates for continuous variables

2.1. NOT gate

The one-body continuous-variable NOT gate may be defined as the parity operator

NOT = (−1)a
†a (9)

where a and a† are bosonic annihilation and creation operators. It is easy to see that

NOT|x〉 = |−x〉
NOT|p〉 = |−p〉
NOT2 = 1

(10)

where |x〉 is the eigenstate of the position operator x̂, and |p〉 is the eigenstate of the momentum
operator p̂.
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2.2. Hadamard gate

The continuous version of the Hadamard gate is in fact the Fourier transformation and defined
by [15]

F(σ)|x〉 = 1

σ
√

π

∫
dy e2ixy/σ 2 |y〉 (11)

where σ is the scaled length. This is the transformation used to go from the position to the
momentum basis if we set σ = √

2. The inverse F †(σ ) is obtained by replacing i by −i giving
the result that

F(σ)F †(σ )|x〉 = F †(σ )F (σ )|x〉 = |x〉. (12)

Note that the continuous-variable Hadamard gate is not self-inverse.

3. Two-body and many-body gates for continuous variables

3.1. CN gate

The two-qubit CN gate has been extended to the case of continuous variables, the gates
CN+

12 [15] and CN−
12 [16], which are defined by

CN±
12|x〉1|y〉2 = |x〉1|x ± y〉2 (13)

CN+
12 = e−ix̂1p̂2 (14)

CN−
12 = NOT2eix̂1p̂2 = e−ix̂1p̂2 NOT2 (15)

where the position operator of system i (i = 1, 2) is denoted by x̂i and the momentum operator
by p̂i . In momentum space the CN gate can be defined as

CN±
12|p〉1|q〉2 = |p〉1|p ± q〉2 (16)

CN+
12 = eix̂2p̂1 (17)

CN−
12 = NOT2e−ix̂2p̂1 = eix̂2p̂1 NOT2. (18)

The definitions of the CN gates are basis dependent. From equations (14) and (15), it is easy
to check that both gates are unitary, the gate CN+

12 is not Hermitian and not self-inverse, while
CN−

12 is Hermitian and self-inverse.
The CN gate for qubits has been used in various kinds of quantum information processing

such as teleportation [17], dense coding [18], quantum state swapping [4], entangling quantum
states [19] and Bell measurements [20]. It is natural to ask that if the continuous CN gates can
perform some similar tasks like entangling and swapping quantum states. Let the continuous
CN gates CN±

12 and the Hadamard gate F(
√

2) act on the state |z〉1|y〉2. The resultant states
are entangled states:

|ψ〉± = CN±
12F(

√
2)|z〉1|y〉2 = 1√

2π

∫
dx eixz|x〉1|x ± y〉2. (19)

It is interesting to see that the following equations:

(x̂1 − x̂2)|ψ〉± = ∓y|ψ〉± (20a)

(p̂1 + p̂2)|ψ〉± = z|ψ〉± (20b)

hold. That is to say, both the entangled states |ψ〉± are the common eigenvectors of the
position difference operator x̂1 − x̂2 and momentum sum operator p̂1 + p̂2. Furthermore, both
the continuous CN gates can be used to construct the N -party entangled state as follows:
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CN±
12CN±

13 . . . CN±
1N |p = 0〉1|x = 0〉2|x = 0〉3 . . . |x = 0〉N

= 1√
2π

∫
dx |x〉1|x〉2 . . . |x〉N. (21)

This state is obtained by Braunstein [15] by a series of beam splitters. Here we provide an
alternative way to obtain this state by using N CN gates. The N -party entangled state is an
eigenstate with total momentum zero and relative positions zero.

3.2. SWAP gate

Having seen that both the continuous CN gates can entangle quantum states, then we ask if
they can perform quantum state swapping by certain combinations of them. For continuous
variables we have

CN−
21CN±

12|x〉1|y = 0〉2 = |y = 0〉1|x〉2. (22)

From equation (3), one may guess that a similar expression exists for a continuous-variable
SWAP gate. It is straightforward to check that

CN+
12CN+

21CN+
12|x〉1|y〉2 = |2x + y〉1|3x + 2y〉2 (23a)

CN−
12CN−

21CN−
12|x〉1|y〉2 = | − y〉1| − x〉2. (23b)

Then the SWAP gate can be constructed as

SWAP12 = NOT1NOT2CN−
12CN−

21CN−
12 = CN−

12CN−
21CN−

12NOT1NOT2 (24)

SWAP12|x〉1|y〉2 = |y〉1|x〉2. (25)

We see that one cannot obtain the SWAP gate using only the CN+
ij (i 
= j) gates , while one

can use the CN−
ij gates to obtain it. Different from the situation of discrete variables, here the

continuous-variable SWAP gate needs two NOT gates. In fact, the gate CN+
ij (i 
= j) is not

completely useless in the realization of the SWAP gate. Using both the CN+
ij and CN−

ij gates,
we have

SWAP12 = NOT2CN−
12CN−

21CN+
12 = eix̂1p̂2 NOT1eix̂2p̂1 e−ix̂1p̂2 . (26)

Here we have used equations (14) and (15). Then we can construct the SWAP gate using the
one-body gates and three two-body gates. The SWAP gate acting on momentum space can be
constructed similarly.

Recalling that the two-qubit SWAP gate can be given in equation (5), we expect that the
continuous SWAP gate be implemented in another way. Now we introduce the operator

B12 = ei π
2 (x̂1p̂2−x̂2p̂1) (27)

acting on the two continuous systems 1 and 2. The operator corresponds to a beam splitter and
performs the transformation

B12

(
p̂1

p̂2

)
B

†
12 =

( −p̂2

p̂1

)
(28)

from which we have

B12|x〉1|y〉2 = |y〉1| − x〉2. (29)

Then the continuous-variable SWAP gate is immediately obtained as

SWAP12 = NOT2B12. (30)
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From equations (28) and (30), the swapping function of the SWAP gate can be compactly
stated by

SWAP12

(
p̂1

p̂2

)
SWAP12 =

(
p̂2

p̂1

)

SWAP12

(
x̂1

x̂2

)
SWAP12 =

(
x̂2

x̂1

) (31)

which may serve as alternative definitions.
Substituting x̂j = 1√

2
(aj + a

†
j ), p̂j = 1

i
√

2
(aj − a

†
j ) into equation (27), we can re-express

the operator B12 in terms of the annihilation and creation operators and then rewrite the SWAP
gate (30) as

SWAP12 = eiπa
†
2a2 e

π
2 (a

†
1a2−a

†
2a1). (32)

Letting the above SWAP gate act on the discrete Fock basis states, we obtain

SWAP12|n〉1|m〉2 = |m〉1|n〉2 (33)

where |n〉i denotes the Fock state of system i. In fact, equation (33) gives the representation of
the SWAP gate in the two-mode Fock space. We see that the SWAP gate is basis independent,
while the CN gate is basis dependent.

To conclude this section we mention a relation between the SWAP gate and the CN gates:

SWAP12CN12SWAP12 = CN21. (34)

The above equation shows that one can use the SWAP gate and CN gate CN12 to realize another
CN gate CN21.

3.3. Controlledn-NOT gate

We define a Hermitian continuous generalization of the discrete controlledn-NOT gate as

CN(12...N)N+1|x1〉1|x2〉2 . . . |xN 〉N |xN+1〉N+1 = |x1〉1|x2〉2 . . . |xN 〉N
∣∣∣∣ − xN+1 +

N∑
n=1

xn

〉
N+1

(35)

CN(12...N)N+1 = NOTN+1 exp

(
ip̂N+1

N∑
n=1

x̂n

)
. (36)

A similar gate can be defined in momentum space. Then the gate defined in this way is both
unitary and Hermitian, and therefore self-inverse. For the N = 2 and 3, cases the gate becomes
the continuous-variable CN and Toffoli gates, respectively.

3.4. 1 → 2 cloning gate

For discrete variables the CN gates CN21 and CN31 commute with each other, however, for
continuous variables, from equation (15) the following equation:

[CN−
31, CN−

21] = ei(x̂2−x̂3)p̂1 − ei(x̂3−x̂2)p̂1 (37)

holds for two Hermitian CN gates CN−
21 and CN−

31. That is to say, these two continuous-variable
CN gates do not commute.

It is known that the 1 → 2 cloning gate is described by [21]

C = CN31CN21CN13CN12 (38)

in terms of four CN gates. To generalize directly to the continuous case of the above cloning
gate, we obtain

C′ = CN−
31CN−

21CN−
13CN−

12. (39)



9582 X Wang

Using equations (15) and (37), we rewrite the gate C′ as

C′ = e−i(x̂3−x̂2)p̂1 e−ix̂1(p̂2+p̂3)NOT2NOT3 (40)

which is just the continuous-variable 1 → 2 cloning gate up to the two NOT gates [22].

4. Hybrid gates

Now we introduce and study two kinds of hybrid quantum gates, the hybrid CN gate and
CSWAP gate.

4.1. Hybrid CN gate

We define the hybrid CN gate as

CN′
12|0〉1|x〉2 = |0〉1|x〉2

CN′
12|1〉1|x〉2 = |1〉1| − x〉2

which can be realized in a trapped-ion system. In trapped-ion systems, one can have the
following Hamiltonian experimentally [23, 24]:

H1 = λa†aP1 (41)

where a and a† are bosonic annihilation and creation operators of the centre-of-mass motion
of the trapped ion, P1 = |1〉1〈1| is the projection operator and λ is the effective coupling
constant. It is easy to show that the evolution operator e−iλta†aP1 at time t = π/λ gives directly
the hybrid CN gate. One simple application of this gate is the generation of even and odd
coherent states. Let the input state be 1√

2
(|0〉1 + |1〉1)|α〉2, where |α〉2 is a bosonic coherent

state. Then after the gate operation the output state will be 1√
2
(|0〉1|α〉2 + |1〉1| − α〉2). Now

we measure the qubit on the state |±〉 = 1√
2
(|0〉 ± |1〉), the continuous state will collapse into

the even and odd coherent states, respectively.

4.2. Hybrid controlled-SWAP gate

A general controlled-SWAP gate is described by the following transformation:

|�〉1|�〉2|0〉3 → |�〉2|�〉1|0〉3

|�〉1|�〉2|1〉3 → |�〉2|�〉1|1〉3.
(42)

This gate has three inputs and the third is the control qubit. Let the input state of the CSWAP gate
be 1√

2
|�〉1|�〉2(|0〉3 + |1〉3) and measure the output state. If we measure the qubit on the state

|±〉3 = 1√
2
(|0〉3 ± |1〉3), we obtain exactly the symmetric and antisymmetric entangled states,

|�〉1|�〉2 ±|�〉2|�〉1 up to normalization constants. This is actually a universal entangler [25].
So it is desirable to consider the CSWAP gate of the form (42) when the states |�〉1 and |�〉2

are continuous-variable states.
From the continuous-variable SWAP gate (26), the CSWAP gate is formally constructed

as

CSWAP′
12(3) = eix̂1p̂2P3 eiπa

†
1a1P3 eix̂2p̂1P3 e−ix̂1p̂2P3 (43)

where P3 = |1〉3〈1| is the projection operator of control system 3. There are three three-
body interactions in the expression of the CSWAP gate. We will realize the CSWAP gate by
two-body interactions.
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First we see that the operators e±ixp̂ and e±ipx̂ satisfy the relation

eixp = eixp̂eipx̂e−ixp̂e−ipx̂ . (44)

The above relation can be generalized as [26]

eixp sin θ = ei( π
2 −θ)a†aeixp̂e−i( π

2 −θ)a†aeipx̂ei( π
2 −θ)a†ae−ixp̂e−i( π

2 −θ)a†ae−ipx̂ . (45)

As the operator p̂1, x̂2 and P3 commutes with each other, we replace x with x̂2, p with p̂1,
and θ with πP3/2 in equation (45), respectively. Then we obtain

eip̂1x̂2P3 = ei π
2 (1−P3)a

†aeix̂2p̂e−i π
2 (1−P3)a

†aeip̂1x̂ei π
2 (1−P3)a

†ae−ix̂2p̂e−i π
2 (1−P3)a

†ae−ip̂1x̂ . (46)

The above equation shows that we have written the three-body unitary operator eip̂1x̂2P3 in
terms of eight two-body operators. Therefore the CSWAP gate (43) can be written in terms of
two-body operators.

From equations (27) and (30), we write the CSWAP gate in the form

CSWAP′
12 = eiπa

†
2a2P3 ei π

2 (x̂1p̂2−x̂2p̂1)P3 (47)

which also includes a three-body operator. Next we see how to realize this CSWAP gate in a
trapped-ion system.

Gerry derived an effective Hamiltonian for two modes a and b as [27]

H2 = χ(a
†
1a1 − a

†
2a2)P3 (48)

in a trapped-ion system. The Hamiltonian H2 can be rewritten as

H2 = 2χJzP3 (49)

where Jz = 1
2 (a

†
1a1 − a

†
2a2). The operators Jz, J+ = a

†
1a2, and J− = a

†
2a1 form the su(2) Lie

algebra. The unitary operator at time t = −π/(2χ) corresponding to the Hamiltonian is given
by

U = eiπJzP3 . (50)

The unitary operator U can be transformed to U ′ as

U ′ = ei π
2 JxUe−i π

2 Jx

= eiπJyP3 = ei π
2 (x̂1p̂2−x̂2p̂1)P3 (51)

where Jx = (J+ + J−)/2 and Jy = (J+ − J−) /(2i). From equations (47) and (51), we write
the CSWAP gate as

C-SWAP′
12 = eiπa

†
2a2P3 ei π

4 (a
†
1a2+a

†
2a1)ei π

2 a
†
1a1P3 e−i π

2 a
†
2a2P3 e−i π

4 (a
†
1a2+a

†
2a1)

= ei π
2 a

†
2a2P3 e−i π

2 a
†
1a1P3 ei π

4 (a
†
1a2+a

†
2a1)eiπa

†
1a1P3 e−i π

4 (a
†
1a2+a

†
2a1). (52)

Therefore we have given a form of CSWAP gate in terms of five two-body operators.
We have used two methods to express the three-body hybrid CSWAP gate in terms of

two-body operators. In other words we provide two ways to realize the CSWAP gate.

5. Conclusion

In conclusion we have introduced and studied the continuous and hybrid versions of quantum
gates. The continuous-variable gates include one-body (NOT, Hadamard), two-body (CN,
double CN, SWAP) and many-body gates (controlledn-NOT). Some relations between the CN,
double CN and the SWAP gates are given. The hybrid quantum gates include the hybrid CN
gate and the three-body controlled-SWAP gate. We proposed physical schemes to realize the
hybrid gates in the trapped-ion systems. It is interesting to see that most of the quantum gates
are not only unitary, but also Hermitian, and therefore self-inverse.
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